Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5,7,7,12,14,14-Hexamethyl-4,8-diaza-1,11-diazoniocyclotetradeca-4,11-diene diiodide dihydrate

Alan R. Kennedy, ${ }^{\text {a }}$ Samwel T. Lutta, ${ }^{\text {b }}$ Catriona A. Morrison, ${ }^{\text {a }}$ Maurice O. Okoth ${ }^{\text {b* }}$ and Daniel M. Orang' ${ }^{\text {b }}{ }^{\text {b }}$
${ }^{\text {a }}$ Department of Pure \& Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and ${ }^{\mathbf{b}}$ Department of Chemistry and Biochemistry, Moi University, PO Box 1125-30100, Eldoret, Kenya
Correspondence e-mail: okothmdo@mu.ac.ke

Received 26 January 2011; accepted 16 February 2011

Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.019 ; w R$ factor $=0.046$; data-to-parameter ratio $=20.2$.

The asymmetric unit of the title compound, $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{~N}_{4}{ }^{2+}$.$2 \mathrm{I}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, contains one half-cation, one iodide anion and one water molecule. The cation has crystallographically imposed centrosymmetric symmetry. Despite some differences in the unit-cell dimensions, packing analysis on a cluster of 15 cations and a comparison of the hydrogen bonding suggests that this compound is isostructural with its bromide analogue. Intermolecular hydrogen bonding forms eight-membered $[\mathrm{H}-\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{I}]_{2}$ and $[\mathrm{H}-\mathrm{N}-\mathrm{H} \cdots \mathrm{I}]_{2}$ rings and creates a sheet structure.

Related literature

For the preparation and structure of the equivalent bromide salt, see: Rohovec et al. (1999). For the structure of the perchlorate salt, see: Bi et al. (2008). For structures of representative transition metal complexes, see: Bieńko et al. (2007); Yang (2005); Ballester et al. (2000); Endicott et al. (1981); Wester et al. (1977); Goedken et al. (1973). Macrocyclic metal complexes have been studied extensively owing to their similarity to metallobiomolecules, and in order to further understanding of biological mechanisms, see: Merrell et al. (1977). The packing analysis was performed with Mercury (Macrae et al., 2008).

Experimental

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{~N}_{4}{ }^{2+} \cdot 2 \mathrm{I}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$\gamma=75.809(2)^{\circ}$
$M_{r}=572.30$
$V=561.24(3) \AA^{3}$
Triclinic, $P \overline{1}$
$a=8.4098$ (3) \AA
$Z=1$
Mo $K \alpha$ radiation
$\mu=2.82 \mathrm{~mm}^{-1}$
$b=8.7252$ (2) A
$T=120 \mathrm{~K}$
$\alpha=74.673$ (2) ${ }^{\circ}$
$\beta=66.267(1)^{\circ}$
$0.20 \times 0.14 \times 0.10 \mathrm{~mm}$

Data collection

Bruker-Nonius Roper CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)
$T_{\text {min }}=0.673, T_{\text {max }}=0.746$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.046$
$S=1.18$
2563 reflections
127 parameters
3 restraints

12010 measured reflections 2563 independent reflections 2478 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.030$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.89(3)$	$2.04(3)$	$2.744(2)$	$136(2)$
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{I} 1$	$0.88(2)$	$2.71(2)$	$3.5753(18)$	$171(3)$
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{I} 1^{\text {ii }}$	$0.87(2)$	$2.68(2)$	$3.5494(17)$	$176(3)$
$\mathrm{N} 1-\mathrm{H} 2 N \cdots \cdot 1^{\text {ii }}$	$0.81(3)$	$3.23(3)$	$3.6895(17)$	$119(2)$
$\mathrm{N} 1-\mathrm{H} 2 N \cdots \mathrm{I}^{\mathrm{iii}}$	$0.81(3)$	$2.99(3)$	$3.7110(18)$	$149(2)$
Symmetry codes:	(i)	$-x+1,-y+1,-z ;$	(ii)	$-x+1,-y+1,-z+1 ; \quad$ (iii)

$x+1, y, z-1$.
Data collection: COLLECT (Hooft, 1988); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT ; data reduction: $D E N Z O$ and COLLECT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We are grateful to the National Crystallography Service, University of Southampton, for the data collection. MOO thanks the Commonwealth Scholarship Commission and the British Council for funding and Moi University for sabbatical leave.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2263).

References

Ballester, L., Gil, A. M., Gutiérrez, A., Perpiñán, M. F., Azcondo, M. T., Sanchez, A. E., Coronado, E. \& Gómez-García, C. J. (2000). Inorg. Chem. 39, 2837-2842.
Bi, J.-H., Chen, Y., Huang, Z.-X., Cui, M. \& Hu, N.-L. (2008). Asian J. Chem. 20, 4887-4890.
Bieńko, A., Klak, J., Mroziński, J., Boča, R., Brüdgam, I. \& Hartl, H. (2007). Dalton Trans. pp. 2681-2688.

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
Endicott, J. F., Durham, B., Glick, M. D., Anderson, T. J., Kuszaj, J. M., Schmonsees, W. G. \& Balakrishnan, K. P. (1981). J. Am. Chem. Soc. 103, 1431-1440.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Goedken, V. L., Molin-Case, J. \& Christoph, G. G. (1973). Inorg. Chem. 12, 2894-2897.
Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Merrell, P. H., Urbach, F. L. \& Arnold, M. (1977). J. Chem. Educ. 54, 580-581. Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp 307-326. New York: Academic Press.
Rohovec, J., Vojtisek, P. \& Lukes, I. (1999). Collect. Czech. Chem. Commun. 64, 73-88.
Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wester, D., Edwards, R. C. \& Busch, D. H. (1977). Inorg. Chem. 16, 1055-1060. Yang, Y.-M. (2005). Acta Cryst. E61, m1618-m1619.

supplementary materials

5,7,7,12,14,14-Hexamethyl-4,8-diaza-1,11-diazoniocyclotetradeca-4,11-diene diiodide dihydrate

A. R. Kennedy, S. T. Lutta, C. A. Morrison, M. O. Okoth and D. M. Orang'o

Comment

Macrocyclic metal complexes have been studied extensively owing to their similarity to metallobiomolecules, and in order to further understanding of biological mechanisms (Merril et al., 1977). The title molecule, 5,7,7,12,14, 14-hexamethyl-4,8-diaza-1,11-diazoniocyclo-4,11-tetradecadiene diiodide dihydrate, \mathbf{I}, is the hydroiodide salt of an imine based ligand that has been used extensively to form complexes with the later first row transition metals. These are typically cobalt, nickel and copper complexes (see, for example, Endicott et al., 1981; Ballester et al., 2000; Bieńko et al., 2007) but structural examples with iron, zinc and even chromium are also known (Goedken et al., 1973; Yang, 2005; Wester et al., 1977). The structures of the free base and of the bromide and perchlorate salts have also been reported (Rohovec et al., 1999; Bi et al., 2008).

The macrocyclic dication has crystallographically imposed centrosymetric symmetry, $Z^{\prime}=1 / 2$, with protonation at the amine N -atoms rather than at the imine groups (Fig. 1). The unit-cell parameters are somewhat similar to those of the bromide analogue (Rohovec et al., 1999) measured at room temperature. However, there is a difference in that the most acute angle subtends the longest and shortest cell axes in \mathbf{I}, but subtends the shortest and middle length cell axes in the iodide salt. To check if this was a structurally significant variation the "crystal packing similarity" module of Mercury CSD 2.3 was used (Macrae et al., 2008). This analysis of the largest molecular component in the array (here the macrocyclic cation) showed that a molecular cluster of fifteen cations from each salt matched to within distance and torsion angle variations of 20%. Thus the two structures are isostructural, see overlay in Fig. 2.

Classical intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonding joins the amine and imine N -atoms across the macrocycle. There are also four independent intermolecular hydrogen-bonds. All involve iodide as the acceptor with both water H -atoms acting as donors and atom H 2 N acting as a donor in two seperate interactions, see Table 1. Eight membered $[\mathrm{H}-\mathrm{O}-\mathrm{H} \cdots \mathrm{I}]_{2}$ and $[\mathrm{H}-\mathrm{N}-\mathrm{H} \cdots \mathrm{I}]_{2}$ rings support a two dimensional sheet structure propagated largely through $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ interactions. This is again similar to the bromide structure and so their isostructural nature is confirmed.

Experimental

A $0.2 \mathrm{~mol}(13.2 \mathrm{~mL})$ sample of ethylenediamine $(E D)$ was put into 10 ml absolute ethanol and cooled in an ice bath for about 10 minutes. A $0.2 \mathrm{~mol}(36.2 \mathrm{ml}$ of $55 \%)$ sample of hydroiodic acid was slowly added to the cool $E D$ solution. Care was taken not to let the solution to boil over. After the addition of $\mathrm{HI}, 30 \mathrm{~mL}$ of acetone was added (an excess of 0.4 mL was required) and the solution allowed to cool in an ice bath overnight. The colourless crystalline material was filtered from solution. It was washed in absolute EtOH and dried in air for 30 minutes (yield 6.221 g).

Refinement

The position of the nitrogen-bound H atoms were refined freely, but the positions of the water H atoms were restrained such that $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distances approximated $0.88 \AA$ and $1.33 \AA$ respectively with $U_{\text {iso }}(\mathrm{H})$ set to $1.5 U_{\text {eq }}(\mathrm{O})$. All other

supplementary materials

H atoms were placed in calculated positions and refined in riding modes with $\mathrm{C}-\mathrm{H}=0.98 \AA$ or $0.99 \AA$ for the CH_{3} and CH_{2} groups respectively. The $U_{\text {iso }}(\mathrm{H})$ values were set to 1.5 or 1.2 times U_{eq} of their parent C atoms for the CH_{3} and CH_{2} groups respectively.

Figures

Fig. 1. The molecular structure of the macrocyclic dication with atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level H atoms are presented as a small sphertes of arbitrary radius. Symmetry code: (i) 1-x, 1-y, -z.

Fig. 2. Overlaid packing diagram, showing cations from the iodide structure in green and those from the bromide structure in blue.

5,7,7,12,14,14-Hexamethyl-4,8-diaza-1,11-diazoniocyclotetradeca-4,11-diene diiodide dihydrate

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{~N}_{4}{ }^{2+} \cdot 2 \mathrm{I}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$Z=1$
$M_{r}=572.30$	$F(000)=284$
Triclinic, $P \mathrm{~T}$	$D_{\mathrm{x}}=1.693 \mathrm{Mg} \mathrm{m}^{-3}$
Hall symbol: -P 1	Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$a=8.4098(3) \AA$	Cell parameters from 10421 reflections
$b=8.7252(2) \AA$	$\theta=2.9-27.5^{\circ}$
$c=8.7724(3) \AA$	$\mu=2.82 \mathrm{~mm}^{-1}$
$\alpha=74.673(2)^{\circ}$	$T=120 \mathrm{~K}$
$\beta=66.267(1)^{\circ}$	Block, colourless
$\gamma=75.809(2)^{\circ}$	$0.20 \times 0.14 \times 0.10 \mathrm{~mm}$
$V=561.24(3) \AA^{\circ}$	

Data collection

Bruker-Nonius Roper CCD
diffractometer
2563 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode

2478 reflections with $I>2 \sigma(I)$
graphite
Detector resolution: 9.091 pixels mm^{-1}
$R_{\text {int }}=0.030$
φ and ω scans
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.2^{\circ}$

Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
$h=-10 \rightarrow 10$
$k=-11 \rightarrow 11$

$$
T_{\min }=0.673, T_{\max }=0.746
$$

$$
l=-11 \rightarrow 11
$$

12010 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.046$
$S=1.18$
2563 reflections
127 parameters
3 restraints

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0124 P)^{2}+0.33 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.99$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.75$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0243 (13)

Special details

Experimental. Southampton NCS collection 2010src0073
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
I1	$0.214555(16)$	$0.460869(15)$	$0.757490(15)$	$0.02330(8)$
O1W	$0.6274(2)$	$0.21795(19)$	$0.5780(2)$	$0.0336(4)$
H1W	$0.525(3)$	$0.270(3)$	$0.633(3)$	0.050^{*}
H2W	$0.671(3)$	$0.295(3)$	$0.496(3)$	0.050^{*}
N1	$0.7414(2)$	$0.60362(18)$	$-0.1726(2)$	$0.0139(3)$
N2	$0.6077(2)$	$0.29338(18)$	$0.0038(2)$	$0.0165(3)$
C1	$0.7419(3)$	$0.4771(2)$	$-0.2576(2)$	$0.0185(4)$
H1A	0.8389	0.4822	-0.3694	0.022^{*}
H1B	0.6296	0.4954	-0.2762	0.022^{*}
C2	$0.7653(3)$	$0.3134(2)$	$-0.1486(3)$	$0.0209(4)$
H2A	0.7880	0.2286	-0.2140	0.025^{*}
H2B	0.8680	0.3019	-0.1159	0.025^{*}

C3	$0.6167(3)$	$0.1933(2)$	$0.1357(3)$	$0.0174(4)$
C4	$0.4514(3)$	$0.1743(2)$	$0.2906(2)$	$0.0182(4)$
H4A	0.4494	0.2381	0.3696	0.022^{*}
H4B	0.4604	0.0599	0.3474	0.022^{*}
C5	$0.2753(3)$	$0.2226(2)$	$0.2659(2)$	$0.0158(4)$
C6	$0.7788(3)$	$0.0876(3)$	$0.1592(3)$	$0.0275(5)$
H6A	0.7804	-0.0226	0.1507	0.041^{*}
H6B	0.7780	0.0881	0.2711	0.041^{*}
H6C	0.8836	0.1283	0.0712	0.041^{*}
C7	$0.2617(3)$	$0.1223(2)$	$0.1546(3)$	$0.0214(4)$
H7A	0.1452	0.1527	0.1456	0.032^{*}
H7B	0.2788	0.0079	0.2052	0.032^{*}
H7C	0.3523	0.1417	0.0414	0.032^{*}
C8	$0.1260(3)$	$0.2045(2)$	$0.4379(3)$	$0.0235(4)$
H8A	0.1421	0.2616	0.5118	0.035^{*}
H8B	0.1266	0.0902	0.4895	0.035^{*}
H8C	0.0134	0.2502	0.4230	0.035^{*}
H1N	$0.649(3)$	$0.599(3)$	$-0.076(3)$	$0.020(6)^{*}$
H2N	$0.829(4)$	$0.584(3)$	$-0.149(3)$	$0.029(7)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.01952(10)$	$0.03155(11)$	$0.01896(10)$	$-0.00480(6)$	$-0.00879(7)$	$-0.00124(6)$
O1W	$0.0384(10)$	$0.0238(8)$	$0.0371(10)$	$-0.0029(7)$	$-0.0157(8)$	$-0.0017(7)$
N1	$0.0139(8)$	$0.0133(7)$	$0.0155(8)$	$-0.0038(6)$	$-0.0075(7)$	$0.0007(6)$
N2	$0.0160(8)$	$0.0143(7)$	$0.0190(8)$	$-0.0048(6)$	$-0.0052(7)$	$-0.0025(6)$
C1	$0.0213(10)$	$0.0168(9)$	$0.0173(10)$	$-0.0052(7)$	$-0.0053(8)$	$-0.0036(7)$
C2	$0.0180(10)$	$0.0141(9)$	$0.0256(11)$	$-0.0041(7)$	$-0.0017(8)$	$-0.0040(8)$
C3	$0.0173(9)$	$0.0153(9)$	$0.0240(10)$	$-0.0027(7)$	$-0.0105(8)$	$-0.0055(7)$
C4	$0.0197(10)$	$0.0172(9)$	$0.0185(9)$	$-0.0036(7)$	$-0.0101(8)$	$0.0011(7)$
C5	$0.0190(10)$	$0.0118(8)$	$0.0171(9)$	$-0.0053(7)$	$-0.0092(8)$	$0.0031(7)$
C6	$0.0221(11)$	$0.0293(11)$	$0.0303(12)$	$0.0028(8)$	$-0.0137(9)$	$-0.0038(9)$
C7	$0.0261(11)$	$0.0155(9)$	$0.0284(11)$	$-0.0071(8)$	$-0.0154(9)$	$-0.0012(8)$
C8	$0.0212(11)$	$0.0219(10)$	$0.0218(11)$	$-0.0070(8)$	$-0.0055(8)$	$0.0044(8)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{~W}$	$0.877(17)$
$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2 \mathrm{~W}$	$0.873(17)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.485(2)$
$\mathrm{N} 1-\mathrm{C} 5^{\mathrm{i}}$	$1.524(2)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.89(3)$
$\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N}$	$0.81(3)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.269(3)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.462(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.512(3)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9900

$\mathrm{C} 4-\mathrm{C} 5$	$1.524(3)$
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9900
$\mathrm{C} 5-\mathrm{N} 1^{\mathrm{i}}$	$1.524(2)$
$\mathrm{C} 5-\mathrm{C} 8$	$1.524(3)$
$\mathrm{C} 5-\mathrm{C} 7$	$1.524(3)$
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9800
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9800
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	0.9800
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9800

sup-4

supplementary materials

C1-H1B	0.9900
C2-H2A	0.9900
C2-H2B	0.9900
C3-C6	1.504 (3)
C3-C4	1.510 (3)
H1W-O1W-H2W	101 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5^{\text {i }}$	117.45 (15)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	107.0 (15)
C5 ${ }^{\text {i }}$ - $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	105.9 (15)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N}$	109.8 (18)
$\mathrm{C} 5{ }^{\mathrm{i}}-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N}$	108.5 (18)
$\mathrm{H} 1 \mathrm{~N}-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N}$	108 (2)
C3-N2-C2	120.48 (17)
N1-C1-C2	109.64 (16)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.7
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.7
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.7
C2-C1-H1B	109.7
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.2
N2-C2-C1	110.39 (16)
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.6
N2-C2-H2B	109.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.6
H2A-C2-H2B	108.1
N2-C3-C6	127.05 (19)
N2-C3-C4	119.23 (17)
C6-C3-C4	113.71 (17)
C3-C4-C5	118.10 (16)
C3-C4-H4A	107.8
C5-C4-H4A	107.8
C3-C4-H4B	107.8
$\mathrm{C} 5^{\mathrm{i}}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	178.16 (16)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{Cl}$	-156.80 (17)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	69.8 (2)
C2-N2-C3-C6	1.3 (3)
C2-N2-C3-C4	-179.47(16)

C7-H7B	0.9800
C7-H7C	0.9800
C8-H8A	0.9800
C8-H8B	0.9800
C8-H8C	0.9800
C5-C4-H4B	107.8
H4A-C4-H4B	107.1
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{C} 5-\mathrm{C} 4$	109.64 (15)
N1 ${ }^{\text {i }}-\mathrm{C} 5-\mathrm{C} 8$	109.95 (16)
C4-C5-C8	109.65 (16)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{C} 5-\mathrm{C} 7$	105.81 (15)
C4-C5-C7	111.51 (16)
C8-C5-C7	110.21 (16)
C3-C6-H6A	109.5
C3-C6-H6B	109.5
H6A-C6-H6B	109.5
C3-C6-H6C	109.5
H6A-C6-H6C	109.5
H6B-C6-H6C	109.5
C5-C7-H7A	109.5
C5-C7-H7B	109.5
H7A-C7-H7B	109.5
C5-C7-H7C	109.5
H7A-C7-H7C	109.5
H7B-C7-H7C	109.5
C5-C8-H8A	109.5
C5-C8-H8B	109.5
H8A-C8-H8B	109.5
C5-C8-H8C	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
N2-C3-C4-C5	23.3 (3)
C6-C3-C4-C5	-157.41 (17)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1^{\mathrm{i}}$	-55.5 (2)
C3-C4-C5-C8	-176.29 (16)
C3-C4-C5-C7	61.4 (2)

Symmetry codes: (i) $-x+1,-y+1,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.89(3)$	$2.04(3)$	$2.744(2)$	$136(2)$
O1W—H1W $\cdots \mathrm{I} 1$	$0.88(2)$	$2.71(2)$	$3.5753(18)$	$171(3)$
O1W—H2W $\cdots 1^{\mathrm{ii}}$	$0.87(2)$	$2.68(2)$	$3.5494(17)$	$176(3)$
$\mathrm{N} 1 — \mathrm{H} 2 \mathrm{~N} \cdots \mathrm{I} 1^{\mathrm{ii}}$	$0.81(3)$	$3.23(3)$	$3.6895(17)$	$119(2)$
$\mathrm{N} 1 — \mathrm{H} 2 \mathrm{~N} \cdots \mathrm{I} 1^{\mathrm{iii}}$	$0.81(3)$	$2.99(3)$	$3.7110(18)$	$149(2)$

supplementary materials

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $-x+1,-y+1,-z+1$; (iii) $x+1, y, z-1$.

Fig. 1

Fig. 2

